Wavelets on the Sphere: Implementation and Approximations

نویسنده

  • P. Vandergheynst
چکیده

We continue the analysis of the continuous wavelet transform on the 2-sphere, introduced in a previous paper. After a brief review of the transform, we define and discuss the notion of directional spherical wavelet, i.e., wavelets on the sphere that are sensitive to directions. Then we present a calculation method for data given on a regular spherical grid G. This technique, which uses the FFT, is based on the invariance of G under discrete rotations around the z axis preserving the φ sampling. Next, a numerical criterion is given for controlling the scale interval where the spherical wavelet transform makes sense, and examples are given, both academic and realistic. In a second part, we establish conditions under which the reconstruction formula holds in strong L sense, for 1 ≤ p < ∞. This opens the door to techniques for approximating functions on the sphere, by use of an approximate identity, obtained by a suitable dilation of the mother wavelet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

متن کامل

Directional Wavelets on the Sphere

In this paper we propose a construction of directional wavelets on the sphere. We make use of the Euclidean Limit defined in [1] for lifting up to ¥ § ¦ usual directional wavelets in¨© ¦. We finally discuss implementation issues and potential applications.

متن کامل

Needlet approximation for isotropic random fields on the sphere

In this paper we establish a multiscale approximation for random fields on the sphere using spherical needlets — a class of spherical wavelets. We prove that the semidiscrete needlet decomposition converges in mean and pointwise senses for weakly isotropic random fields on Sd, d ≥ 2. For numerical implementation, we construct a fully discrete needlet approximation of a smooth 2-weakly isotropic...

متن کامل

Surface Representations Using Spherical Harmonics and Gabor Wavelets on the Sphere

In this paper we present a new scheme for the representation of object surfaces. The purpose is to model a surface efficiently in a coarse to fine hierarchy. Our scheme is based on the combination of spherical harmonic functions and wavelet networks on the sphere. The coefficients can be estimated from scattered data sampled from a star-shaped object’s surface. Spherical harmonic functions are ...

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002